

La longueur d'onde est la distance parcourue par une onde acoustique pendant une période. Elle se calcule comme suit :

= C/F

Avec (Lambda) en mètres

Le cercle trigonométrique tourne dans le sens inverse des aiguilles d'une montre.

L'expression mathématique de cette sinusoïde est la suivante :

$$x = x0.\sin \omega t = x0.\sin 2\pi f t$$

Exemple: une fréquence de 100 Hz.

Sa longueur d'onde est de 3,4 mètres, sa période est de 10 ms.

La phase

180° = 1.7m x 100Hz x 360° / 340m/s 360° = 3.4m x 100Hz x 360° / 340m/s 540° = 5.1m x 100Hz x 360° / 340m/s 720° = 6.8m x 100Hz x 360° / 340m/s

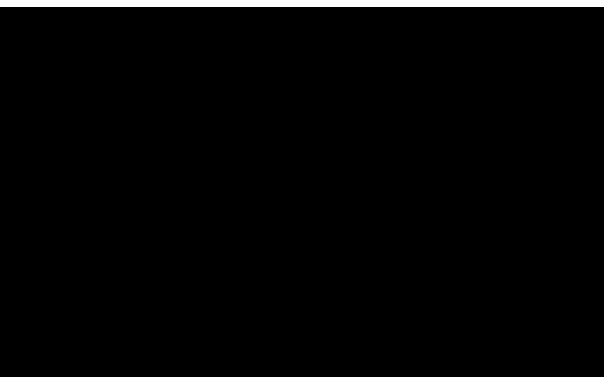
.

Sur le graphique ci- dessus, on peut observer que l'évolution dans le temps de notre signal correspond à une évolution en degrés. Un cycle complet correspond à 360°. Un cycle plus tard,mp

 $=\sqrt{1.\sin 180} \)^2 \ (1.\cos 0 \ 1.\cos 180 \)^2$

Ou encore sous cette forme :

Explications:


Exemple:

Dans le cas de deux monopôles en phase (recevant le

lci, on atténue de 15 dB la fréquence de 100Hz.

Ici, un passe-haut à 160 Hz.

Dernier exemple, plusieurs atténuations à différentes fréquences.